Transactions of the American Mathematical Society, Vol. 349, No. 3 (Mar., 1997), pp. 903-934 (32 pages) For every finitely generated, congruence modular variety V of finite type we find a finite ...
Using “refreshingly old” tools, mathematicians resolved a 50-year-old conjecture about how to categorize important functions called modular forms, with consequences for number theory and theoretical ...
We study the existence of a modular form satisfying a certain congruence relation. The existence of such modular forms plays an important role in the determination of the structure of a ring of ...
La congruence sur les entiers est une relation pouvant unir deux entiers. Elle fut pour la première fois étudiée en tant que structure par le mathématicien allemand Carl Friedrich Gauss à la fin du ...